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1. The theory of isotropic rigid-plastic body is the most developed 

chapter of the mathematical theory of plasticity [l-6 1. A characteristic 

feature of the ideally plastic flow is its shear mechanism and,consequent- 

ly, an appearance of slip lines and slip surfaces. The mathematical form- 

ulation of these phenomena reduces to hyperbolic differential equations. 

In [7 ] was considered the problem of the construction of a theory for 

a body which is: a) homogeneous, b) ideal, cl isotropic, d) incompress- 

ible, e) rigid-plastic and f) which exhibits like behavior in tension and 

compression, i.e. the yield points for tension and compression are equal. 

and, with the reversing of the stress sign, the velocities also reverse 

their sign. We shall call in the sequel the isotropic bodies which satis- 

fy condition (f) normal isotropic bodies (normal isotropy); otherwise, 

we shall call them anormally isotropic bodies (anormal isotropy). 

The following proposition was advanced [l-6 1: among all admissible 

plasticity conditions within a given group of mechanical properties of 

materials there exists only one true condition. We note also that a given 

plasticity condition determines a plastic flow law associated with it. 

It was also shown that a true plasticity condition for a homogeneous, 

ideal, normally isotropic, rigid-plastic body is the Tresca condition. 

It is known [ 8,9 1 that the Tresca condition permits a theory to be 

developed for an ideally plastic body with unique qualitative character- 

istics, which correspond well to the shear behavior of ideally plastic 
flow. 

It is also known that any other plasticity condition, except for the 
cases when such a condition essentially coincides with the Tresca condi- 

tion, leads to equations which in the general case give results which do 
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not correspond to the qualitative nature of ideal plastic flow. Among 
others. the von Mises condition belongs to this group, and it leads in 
the general case to elliptic differential equations. 

The class of all admissible plasticity conditions is determined by a 
family of functions convex relative to the origin: 

f (&, (&I) = const (1.1) 

where 3, x3 are the second and third invariants of the stress deviator 
tensor respectively. 

For torsion and plane-strain problems (and for some other cases) all 
plasticity conditions are reduced to one, namely 

zp, = const (1.2) 

For plane-stress and three-dimensional general axisymmetric problems 
there exists 4 priori a possibility of choice of various plasticity con- 
ditions within the class (1.1). 

In [ 7 1 it was assumed that the value of the yield stress in tension 
and compression for all plasticity conditions (1.1) is the same. Thus. 
in each specific case an arbitrary constant was dett!rmined, which appears 
on the right-hand side of (1.1). and thus a class of all admissible 
plasticity conditions has been determined (Fig. 1). 

Obviously, if an additional requirement is set forth that a class of 
admissible plasticity conditions satisfies some other given stress combi- 
nation, then the relative position of yield surfaces will be different 
[ 10 1 (Fig. 2). In the case, when for a class of admissible plasticity 
conditions a value of the yield stress in shear is fixed, then the rela- 
tive position of yield surfaces is as shown in Fig. 3. 

For all considered cases of admissible plasticity conditions only one 
experimental point is common. This fact is explained as follows. For a 
given ideally plastic body the initiation of yield for a given stress 
combination must be completely determined. However, this condition, viz. 
the specification of one experimental point, does not impose any limita- 
tions on a class of admissible plasticity conditions. The selection of 
an experimental point determines only relative positions of the yield 
surfaces. 

In [ 7 1 three theorems have been formulated. 

Local theorem. For all given deformation increments of an element of 
a body the work of external forces attains its minimum for the true 
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plasticity condition. 

Fig. 1. Fig. 2. Fig. 3. 

Integral theorem. (I) For given boundary displacements of a body the 
work of external forces attains its minimum for the true plasticity con- 
dition among all admissible plasticity conditions. (II) The work of given 
external forces attains its maximum for the true plasticity condition 
among all admissible plasticity conditions. 

These theorems were formulated for completely determined configurations 
of admissible yield surfaces (Fig. 11. If an experimental point in shear 

is given (Fig. 3). then the word nminimumll has to be replaced by “maximum’, 

and vice versa. 

Let us consider in greater detail the case 
when one experimental point is given. Assume 
that on the basis of an experiment it was 
established that plastic flow of an ideal, 
normally isotropic, incompressible, rigid- 

B plastic body takes place after some combi- 
nation of the stresses achieves the value 
represented by point A in Fig. 4. Figure 4 
represents one sixth of a deviatoric plane; 
this is sufficient for further considerations. 

Fig. 4. Assume that OA = 1. All admissible convex 
yield polygons are bounded by broken lines 
BCD. . . and BIC,D,... . Assume now that an 

angle AOB is fixed and is equal to y. A variable angle 8 will be measured 
counter-clockwise from OB. Note that angle BOD= l/3 II and angle BOC= 
l/6 w. We shall assume that the displacement increment vector dr is given 
and for simplicity we set ( dr 1 = 1. 

To begin with, let us consider the Tresca plasticity condition repre- 
sented by the segment BD. The direction of flow for the interior points 
of BD is 8 = l/6 o, and the other remaining flow directions correspond 
to the points B and D. 
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It is easy to see that the magnitude of the work of the stresses along 

given deformation increments for the Tresca plasticity condition will 

have the form 

dA T (1.3) 

To the segment BICl corresponds the flow direction 8 = 0, and to the 

segment C,D, corresponds the flow direction 8 = l/3 n. The other remain- 

ing directions correspond to the vertex Cl. Clearly, the magnitude of 

the work for this plasticity condition is 

(1.4) 

The von Uses plasticity condition is characterized by the magnitude 

of the work 

dA,=ude=C (1.5) 

Hencky [ll 1 established the stationary character of the work for the 

case of the von Mises plasticity condition. 

Figure 5 represents the variation of the work with angle 8. 

Fig. 5. Fig. 6. Fig. 7. 

Furthermore, the variation of dAT is represented by a curve abc and 

that of dA* by df e. The horizontal line mn corresponds to the work dAy 

for the von Mises plasticity condition. 

Obviously, the plasticity condition satisfying the minimum work re- 

quirement is represented by the broken line BIACAID. In this case the 

work is 
dAl = cos (0 - r) (0 < 8 < ‘,‘a 4 

(1.6) 
dA1 = cos (l/a x - 0 - y) (l/6 x < 0 < l/3 n) 

A corresponding curve in Fig. 5 is dkble. If y = 0, i.e. if the 
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original experiment is simple tension or compression, then the work 
diagram is as shown in Fig, 6. In this case the Tresca plasticity condi- 
tion satisfies the minimum work requirement 17 I. 

If y = l/6 R, i.e. if the original experiment is pure shear (aI = -u2, 
2 CT3 - ol- u* = 0). then the Tresca plasticity condition satisfies the 
maximum work requirement among all other admissible plasticity conditions 

(Fig. 7). 

The von Uses plasticity condition does not satisfy the extremum con- 
dition of work along given displacement increments among all admissible 
plasticity conditions. The von Mises circle is bounded below by a broken 
line B,ACA,D,. . . , and from above by a broken line EFG.. . (Fig. 4). In 
other words, for an arbitrary original experimental point and for arbi- 
trary deformation increments it is possible to find within a class of 
admissible plasticity conditions two such plasticity conditions for which 

(1.7) 

where dAI and dA, are the increments of work of the stresses for some 
specially selected plasticity conditions. 

We shall now formulate the above point of view. In the theory of a 

homogeneous, ideal, incompressible, normally isotropic, rigid-Plastic 
body there exists only one true plasticity condition (a basic PrOPOsi- 
tion). 

There are evidences (such as qualitative behavior of observed flows 
of metals being close to the ideally plastic behavior; the experiments 
which demonstrate that the metals with the more pronounced plateau at 
the yield point behave in closer conformity with the Tresca plasticity 
condition) which permit the assertion that this true plasticity condi- 
tion is the Tresca condition. 

There exist energy criteria which sin@le out the Tresca plasticity 
condition among the class of all admissible conditions, if one accepts 
as the criterion of the class of admissible conditions a known value of 
initiation of yield in tension, compression or pure shear. 

The development of such concepts may permit us to formulate a criterion 
for the determination of a true relationship between the stresses and de- 
formations within a given group of the mechanical Properties of materials. 

We would like to dwell longer on the work [lo 1. In the first section 
of this work one finds the following: “close attention was given to the 
determination of a plasticity condition for the case when a limiting 
tensile stress is given and when the two extremal principles are utilized’. 
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For a body element in [‘I 1 an extremum of the work of the stresses 

along given increments of deformations was determined; in other words, 

vector dr was given. (The modulus of this vector, for the sake of 
a 

simplicity, was taken as unity). Then the following expression was con- 

sidered: 

CL4 = ode = 6 cos (u, de) (2.1) 

In [lo] two extremal principles are mentioned for a given element of a 

body. One does not find, however, any formulation of these principles 

there, and moreover in both cases an extremum of the same quantity (2.1) 

was considered. 

When an element of a body is considered one can assign a vector dc 

and compare the magnitude of the work of the stresses (2.1) along given 

deformation increments for all admissible plasticity conditions. It is 

impossible, however, to assign in a general case the stress-vector 0. 

and thus it is meaningless to speak about two local variational Prin- 

ciples. 

In the first section of [lo 1 it is pointed out that if the yield sur- 

face of an admissible plasticity condition lies outside the von Mises 

circle, then the work (2.1) is greater or equal to the same expression 

for the von Mises circle and, conversely, if the yield surface of an 

admissible plasticity condition lies inside the von Uses circle then the 

work (2.1) is less or equal to the same for the von Mises circle. 

But.this is a special case of a more general situation. l If in the 

deviatoric plane a yield surface of some admissible plasticity condition 

is outside another yield surface (they may have common points), then the 

work (2.1) for the former is larger or equal to the work for the latter. 

Note that Expressions (2.1) are equal for a given vector dr. 

In the second section of [ 10 1 it is said: ‘D.D. Ivlev points out in 

his work that he does not take into consideration the other experimental 

points because of the inaccuracy of the experimental procedures”. 

A simple review of [ 7 I would show that no such statement was made. 

The problem is not that of accuracy of the experiments. An experiment 

may be executed perfectly. A given experiment, however, is dealing with 

real materials and the ideally plastic body is only a model. Thus, a 

more accurate experiment will show more drastically the deviations in the 

* 1u.N. Rabotnov drew the author’s attention to this fact in 1958 while 

[ 7 1 was in progress. 
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behavior of real materials and models. 

The use of one experimental point, as has been demonstrated, does not 
impose any limitations on the class of admissible plasticity conditions, 
and permits the consideration of the totality of all admissible plasti- 
city conditions. 

Next in [ 10 1 it was said: “Since from the point of view of the 
simplest isotropic,ideally plastic theory the selection of a fixed ex- 
perimental point should not influence the results of the investigations, 
it can be asserted that in the most general case of specification of an 
experimental point only the von Mises plasticity condition remains a 
physical invariant characteristic. n 

To date,the ideally plastic theory has dealt with the concept of an 
isotropic body but not with the concept of “an isotropic theory” (this 
terminology appears twice in [lo I). This terminology should be clarified. 

If the von Mises plasticity condition were only a physical invariant 
characteristic. then the question would automatically be resolved in 
favor of the author of [ 10 1 . It is not so, however, and this has been 
known since the time of Tresca. Moreover, any plasticity condition form- 
ulated in terms of the invariants is an invariant characteristic. 

In the framework of the considered energy criteria there does not 
exist a single case where the von Yises plasticity condition appears to 
be preferable to any other condition. 
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